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Abstract Web browsers have been used widely by users to conduct various online activities,
such as information seeking or online shopping. To improve user experience and extend the
functionality of browsers, practitioners provide mechanisms to allow users to install third-
party-provided plugins (i.e., extensions) on their browsers. However, little is known about the
performance implications caused by such extensions. In this paper, we conduct an empirical
study to understand the impact of extensions on the user-perceived performance (i.e., energy
consumption and page load time) of Google Chrome, the most popular browser. We study a
total of 72 extensions from 11 categories (e.g., Developer Tools and Sports), consisting of 61
extensions with distinct types of privacy practices used and 11 extensions without adopting
any privacy practices (i.e., no privacy-related data is collected). We observe that browser
performance can be negatively impacted by the use of extensions, even when the extensions
are used in unintended circumstances (e.g., when logging into an extension is not granted
but required, or when an extension is not used for designated websites). We also identify a
set of factors that significantly influence the performance impact of extensions, such as code
complexity and privacy practices (i.e., collection of user data) adopted by the extensions.
Based on our empirical observations, we provide recommendations for developers and users
to mitigate the performance impact of browser extensions, such as conducting performance
testing and optimization for unintended usage scenarios of extensions, or adhering to proper
usage practices of extensions (e.g., logging into an extension when required).
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1 Introduction

Online services, such as information seeking, video streaming, or social networking services,
rely on web browsers as the user interfaces to allow the users to interact with the provided
services. In particular, Internet video dominates global Internet traffic, accounting for 71%,
and the web/data category (e.g., media and entertainment services and banking applications)
constitutes 12% of all Internet traffic in 2022 (Manner, 2022). With the growth of Information
and Communication Technology (ICT), the median size of desktop web pages has surged by
336% in a decade, escalating from 468 KB in 2010 to 2042 KB in 2020 (Manner, 2022).
When a web browser takes longer to load a webpage or runs slower, it can be frustrating for
users and leads to diminished productivity or even customer attrition (Tian and Ma, 2019;
Borgolte and Feamster, 2020; Pourghassemi, Amiri Sani, and Chandramowlishwaran, 2019).

Energy usage is considered as a non-trivial quality attribute of software products (Pang
etal., 2016). Over the last three decades, the total energy consumption of ICT has surged by a
staggering 822.79%, increasing from 2182.72 TWh per year in 2001 to an estimated amount
of 17959.11 TWh per year in 2030 (P. Wang et al., 2022). Energy consumption is a concern
for browser users, particularly for users of battery-powered devices (e.g., laptops) (Banerjee
et al., 2007; Kor et al., 2015). Web browsers operating on portable devices, such as laptops
and mobile phones, drain a substantial amount of power to keep the webpage alive, update the
content of webpages, or retain multiple tabs (Macedo et al., 2021). Moreover, the excessive
energy consumption of electricity-power devices (e.g., desktops) has significant environmen-
tal impact (Amsel and Tomlinson, 2010; Murugesan, 2008). It is preferable that the software
can be energy efficient, extend battery life, and enhance the overall user experience (Pang
et al., 2016). The current studies (Tiwari et al., 1996; Amsel and Tomlinson, 2010; Fei et al.,
2004) on energy consumption tend to predominately focus on CPU usage while neglecting
the actual patterns of energy consumption resulting from software.

The performance of web browsers (e.g., energy consumption or page load time) plays
a crucial role in shaping user experience and ensuring sustainability. Web browsers, such
as Google Chrome, typically support a variety of extensions that allow users to extend the
browsers’ functionalities, such as advertisement (ad) blocking, password management, and
language translation. However, the extensions can consume additional resources, such as pro-
cessing power, memory, and network bandwidth, and may potentially affect the performance
of browsers. Prior work (Pearce, 2020; Merzdovnik et al., 2017; Borgolte and Feamster,
2020) has studied extensively on browser performance. Nonetheless, the prior work has
primarily examined the impact of browser extensions on either page load time or energy con-
sumption of particular types of extensions. For example, Pearce (2020) studies the energy
effect of three ad blocking extensions in the Chrome browser during page loading and finds
that open-source ad blockers reduce the waiting time for ads to load and decrease power
consumption. Borgolte and Feamster (2020) study the impact of eight privacy-focused ex-
tensions on browser performance in terms of page load time and CPU time. Thus, the results
of aforementioned studies may not be generalizable to other categories of extensions.

To address the limitation of the existing work, we offer a comprehensive approach to
understand the impact of the extensions on the user-perceived performance of the browser.
More specifically, our approach consists of the following aspects:
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— We encompass a wider variety of extension types by selecting 72 representative extensions
from 11 categories (e.g., shopping, blogging, or accessibility).

— We study performance metrics, including both page load time and energy consumption, as
energy consumption and page load time directly impact user experience (Palomba et al.,
2018; Chan-Jong-Chu et al., 2020; Janssen et al., 2022; Tian and Ma, 2019; Borgolte and
Feamster, 2020; Hindle, 2013).

— We investigate energy consumption by breaking down energy consumption from two
phases, namely, page load and stabilized energy consumption, for a detailed analysis.

— We systematically examine how the configurations (e.g., active or inactive) and influential
factors (e.g., code metrics) of extensions impact browser performance.

We organize our paper along three research questions (RQs) in a progressive manner.
Specifically, RQ1 investigates the overall performance impact of browser extensions. RQ2
further studies the difference brought by various usage modes of the extensions, and RQ3
systematically examines a wide range of factors of extensions to identify the factors that can
significantly impact browser performance.

RQ1: How do extensions impact browser performance? Practitioners may not be aware
that extensions can impair the performance of browsers and degrade the user experience.
In this RQ,we focus on the fully-loaded mode of extensions, in which the extension is
configured to perform as intended by the developers'. We analyze the impact of extensions
on the browser performance when they are used in the expected mode (i.e., fully-loaded mode)
and observe that the use of extensions can lead to a statistically significant impact on the
browser performance, with the largest negative impact on the load time energy consumption.

RQ2: How do the usage modes of extensions affect browser performance? Users do
not always interact with extensions in the intended or desired manner, leading to unexpected
usage modes. For example, when using extensions, a user has the option to use the extension
after login or use the extension without login. Logged or not logged into the extension are two
usage modes. Extensions may have different performance impacts depending on different
usage modes. By studying how different usage modes of extensions impact the browser
performance, we find that browser performance can be negatively impacted by extensions
even when they are used in unexpected circumstances (e.g., not logged into the extension) or
are not active (e.g., not used for designated websites). Such unintended usage scenarios may
even lead to a worse performance impact than the fully-loaded mode, suggesting the need
for performance testing and optimization for such scenarios.

RQ3: What factors of extensions influence browser performance? When developers
create extensions, they need to consider various factors that may potentially affect browser
performance. In this RQ, we conduct quantitative evaluations on the factors of extensions
that could impact browser performance. For instance, we observe that the adopted privacy
practices of extensions (e.g., personal communication and website contents) can significantly
impact browser performance, suggesting the need to consider the performance impact of
privacy practices when developing and using extensions. Elevated code complexity (e.g., the
number of functions) can also contribute to heightened energy consumption. Furthermore,
extension developers ought to be mindful that certain file types (e.g., SVG image files and
OGG audio files) used in extensions adversely affect browser performance.

In summary, the main contributions of this paper are three-fold:

1 The fully-loaded mode represents that the extension is configured to enable all the necessary capabilities
for the intended usage: i.e., the user is logged in (if required), the extension is used on its designated websites,
and it has the necessary permissions granted to access the website.
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We provide empirical evidence of the performance impact of browser extensions and their
usage modes.

We identify the factors that contribute to the performance impact of browser extensions.
We provide recommendations for developers to conduct performing performance testing
and to optimize unintended usage scenarios of extensions, as well as suggest users to adhere
to proper usage practices in order to mitigate the performance impact of extensions.

Paper organization. We present the design of experiments in Section 2. We discuss
our approaches and results in Section 3. Section 4 discusses the implications of this study.
In Section 5, we describe the threats to validity. We give an overview of related works in
Section 6. Finally, we conclude this paper and discuss future work in Section 7.

2 Experiment Design
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Fig. 1 An overview of our experiment design and analysis.

Figure 1 presents an overview of our approach. We first collect extensions from the
Chrome Web Store, then we cluster the extensions according to their similarities and select
representative extensions from each cluster as our final studied extensions. With the selected
extensions, we design experiments to understand how they impact the browser performance in
terms of energy consumption and page load time (RQ1), how different usage modes impact
the browser performance (RQ2), and what factors of the extensions impact the browser
performance (RQ3).

2.1 Collecting Extensions

Unlike the desktop-based Chrome, the mobile Chrome does not support extensions because
mobile devices have limited processing power and storage capacity to support resource-
demanding extensions. Therefore, our study targets the desktop-based Chrome, which can be
used in portable devices, such as laptops. We collect a total of 110,240 extensions across 11
different categories from the Chrome Web Store. The collected information of the extensions
includes the extension name, category, rating score, used privacy practices, extension size,
the number of raters, and the number of downloads. An example screenshot of an extension
is shown in Figure 2. The descriptive information (e.g., star ratings, category, and number of
users) is annotated in the example.

Privacy practices of extensions specify the actions and policies that extensions take to
collect the personal information and user data. Extensions can be useful to enhance the func-
tionality of the Chrome browser but can also pose a threat to user privacy and data security.
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Fig. 2 An annotated screenshot of an extension from the Chrome Web Store.

It is important for users to be aware of the privacy implications of the extensions they install.
Thus, Chrome Web Store suggests developers to be transparent about their data collection
and use practices by declaring their privacy practices in the Chrome Web Store. Developers
document privacy practices to inform users how they collect, use, store, and share their data.
Nine types of collected data, including Location, User Activity, Website Content, Personally
Identifiable Information, Authentication Information, Web History, Personal Communica-
tions, Financial and Payment Information, and Health Information, are documented during
the development of extensions and are used to describe privacy practice properties. For
example, the use of location services in extensions can track the user’s GPS location and is
useful for certain types of applications, such as navigation or weather forecasts. User Activity
monitors the user’s activity when users browse the webpage for the purposes of analytics and
personalization.

2.2 Selecting Representative Extensions

The performance behavior of popular extensions may not be generalized to other ones. Thus,
we want to extend the existing work (e.g., Pearce, 2020; Merzdovnik et al., 2017; Borgolte
and Feamster, 2020), which studies a few selected extensions, with a more diverse set of
extensions instead of considering the popularity of extensions solely. In particular, we are
interested in investigating all types of extensions in order to generalize the performance
impact of extensions on the browser. Due to the enormous number of extensions available,
studying all of them is impractical, so we sample extensions to ensure a representative
selection. Privacy practices, as a most intuitive factor listed on the Chrome Web Store that
could affect browser performance, are considered in our sampling strategy. As such, we use
two criteria to select the extensions to ensure their representativeness: (1) we consider the
use of privacy practices in extensions to select the studied extensions, as privacy practices
(e.g., Location) may have a significant impact on extension performance (Jin, Li, and Y.
Zou, 2024; Thiagarajan et al., 2012; Thara et al., 2015); (2) we include the extensions from
different categories. In our work, we cover a wide spectrum of extensions in all 11 categories
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of extensions. We cluster the extensions with respect to their privacy practices, and then we
select one extension from each category for each resulting cluster.

Clustering extensions based on privacy practices. Although Google technically re-
quires developers to disclose their usage of privacy practices within 30 days 2, but in reality,
the policy is not strictly enforced. We observe that the majority (i.e., 60%) of the extensions
do not disclose any information about their privacy practices. For instance, the extensions
like AlphaText * and Justify 4 have not yet provided any details about their privacy practices
and are last updated on May 21, 2017, and April 23, 2016, respectively. This is far past the
30-day deactivation period outlined in Chrome Web Store policies as of 2025.Yet, they are
still active to use and available to download on the Chrome Web Store, with only a warning.
As privacy practices listed on the Chrome Web Store are an intuitive factor that can impact
browser performance and the extensions without clarifying privacy practices are untraceable
in terms of structure for the analysis, we choose to focus primarily on extensions that adhere
to best practices—namely, those disclosing privacy practices. Thus, we exclude such exten-
sions and only consider the extensions with privacy practice specifications to perform the
clustering. This also ensures that our measurements are less influenced by ambiguous (unde-
clared) privacy practices and are replicable for future work. Consequently, this study covers
both scenarios—with and without privacy practices. Specifically, we apply the K-medoids
clustering algorithm (Schubert and P. J. Rousseeuw, 2021; Schubert and P. J. Rousseeuw,
2019) to cluster the 12,423 extensions with privacy practice specifications. We treat the
extensions without privacy practices adopted (i.e., marked as “none” in privacy practices) as
a separate cluster (i.e., cluster 0). The K-medoids clustering algorithm outperforms k-means
in handling outliers, noise, and non-convex shapes of clusters (Arora, Deepali, and Varshney,
2016; S. Dsouza, J. D. Dsouza, and T, 2017). Since properties in the privacy practices are
categorical values, we use one-hot encoding (Hackeling, 2017) to convert the privacy prac-
tices of each extension into numerical variables (i.e., 1 means True, and 0 means False). For
simplicity, supposing there are three privacy practices: Location (p1), Personally Identifiable
Information (p2), and Authentication Information (p3), if an extension uses privacy prac-
tices p1 and p3, the corresponding one-hot encoding is (1, 0, 1). We use the Elbow method
(Thorndike, 1953) with silhouette scores (P. J. Rousseeuw, 1987) to choose the number of
clusters. The elbow method chooses the “elbow" point in the Silhouette score ~ the number
of clusters curve (i.e., arelatively small number of clusters with a relatively higher Silhouette
score). The optimal K value, i.e., the best number of clusters, is then determined to be 5,
with a silhouette score of 0.435. The silhouette score ranges from -1 to 1. The higher value
indicates better clustering, and the value of 0.435 suggests a favorable clustering result (P.
Rousseeuw, 1987). Adding the cluster of extensions without privacy practices adopted, we
obtain a total of 6 clusters, as shown in Table 1.

Selecting representative extensions from each category. It is time-consuming to mea-
sure the performance of an extension. To include all 11 categories of extensions in the Chrome
Web Store, we select one representative extension from each category in each cluster. The
selected representative extension from each category has the minimum Manhattan distance
to the medoid of the cluster. The Manhattan distance is a measure of distance between two
points in a grid-based system and is calculated as the sum of the absolute differences in
their coordinates—one-hot encoding of the privacy practices. A medoid is a representative

2 Section: "What happens if I don’t fill out the limited use form?" in https://developer.chrome.com
/docs/webstore/program-policies/user-data-faq

3 https://chromewebstore.google.com/detail/lpcaoilgpobajbkiamaojipjddpkkida
4 (https://chromewebstore.google.com/detail/odkfbmljaomnibofnefflonfehhbhnoo
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Table 1 The extension clusters and examples.

Total Number of | Number of
Extensions Extensions Sampled

31908 11

Cluster | Explanation and Example

None of privacy practice adopted in the extensions
(e.g., Dark Reader!)

The cluster focuses on the adoption of website content
1 in privacy practice items 4056 12
(e.g., Wappalyzer?)

The cluster focuses on the adoption of
2 authentication information in privacy practice items 1951 11
(e.g., Octotree?)

The cluster focuses on the adoption of P.I.I.
3 in privacy practice items 3649 13
(e.g., Keepa“)

The cluster focuses on the adoption of
4 user activity and website content in privacy practice items 1586 11
(e.g., TubeBuddy®)

The cluster focuses on the adoption of
5 user activity in privacy practice items 1181 14
(e.g., Sourcegraph®)

0

P.LL refers to Personally Identifiable Information

The complete list is put in the replication package.
Uhttps://chromewebstore.google.com/detail/eimadpbcbfnmbkopoojfekhnkhdbieeh
2 https://chromewebstore.google.com/detail /gppongmhjkpfnbhagpmjfkannfbllamg
3 https://chromewebstore.google.com/detail/bkhaagjahfmjljalopjnoealnfndnagc
4 https://chromewebstore. google.com/detail/neebplgakaahbhdphmkckjjcegoiijjo
5 https://chromewebstore.google.com/detail /mhkhmbddkmdggbhaaaodilponhnccich
6 https://chromewebstore.google.com/detail/dgjhfomjieaadpol jlnidmbgkdffpack

object of a cluster at the center of the cluster whose the sum of Manhattan distance to all the
objects in the same cluster is minimal. The distance is calculated by the similarity of uses of
privacy practices between an extension and the medoid. The extensions with the minimum
Manhattan distance to the medoid are expected to exhibit the most similar characteristics as
the other extensions within the cluster (i.e., being the most representative).

In total, we select 55 extensions from the 5 clusters of extensions with privacy practice
specifications (i.e., clusters 1 to 5, listed in Table 1). For the cluster of extensions (i.e., cluster
0, listed in Table 1) that do not adopt any privacy practice (i.e., marked as “none" in privacy
practices), the representative extensions cannot be selected in regard to the use of privacy
practices, as all these extensions have the same Manhattan distance to each other in terms of
privacy practices. Instead, we select representative extensions as to their popularity, i.e., we
choose the extensions with the highest number of users in each category. In case two most
popular extensions have the same number of users, we consider the rating scores, followed by
the number of raters. As a result, we select a total of 11 popular extensions without adopting
any privacy practice, choosing one from each category.

There are 6 extensions that are not designated for browsing a website, such as Weather>.
To improve the representatives of our selected extensions, we retain these 6 extensions and
complement them with 6 additional extensions (i.e., ones that work with web browsing) that
are closest to the medoid within the same cluster. As a result, a total of 72 representative
extensions are selected from the remaining 40% of extensions after excluding the 60% without
privacy policy specifications. These comprise 11 extensions that do not have privacy practice
specifications to ensure the representativeness of our analysis, 55 extensions that implement
privacy practices, and 6 additional complementary extensions. Figure 3 shows the popularity

5 https://chrome.google.com/webstore/detail/iolcbmjhmpdheggkocibajddahbeiglb
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Fig. 3 Extension Popularity.

of the chosen 72 extensions, with 71% of extensions (i.e., 51) having been downloaded
over 10,000 times. Table A.1, listed in Appendix A, details the number of downloads for
each selected extension. Some representative extensions, such as Tricky Enough, may not
have been popular at the time of collection, showing low download numbers, but they could
gain popularity over time. For instance, although Tricky Enough has zero downloads when
collected, it has 31 downloads and a 4.9-star satisfaction rating as of October 2024. Therefore,
we do not filter out extensions with a low number of downloads in order to capture emerging
usage patterns of new extensions which may attract more attention over time.

2.3 Designing Testing Scenarios

To measure the performance impact of extensions, we group the extensions based on the
similar execution conditions on a website. For instance, extensions Octotree and Sourcegraph
share similar working conditions and are intended for use on GitHub, thus we group them
together. Afterward, we establish a testing scenario tailored to such extensions. In total, we
create seven types of testing scenarios, as listed in Table 2. For instance, 40 extensions are
universally compatible (i.e., can be used for all websites) with all types of websites on the
internet. The testing scenario for these extensions is named as the Generic scenario. The
GitHub scenario tests extensions that are used to improve the user experience on the GitHub
website. We select only code development projects based on the star rankings available on
GitHub. For eight extensions that cannot be grouped, we classify their testing scenarios as
the Others type, comprising of eight individual testing scenarios for the eight extensions.
The testing scenarios are summarized in Table 2. For each extension in a scenario, we
perform the testing with 10 different websites. For example, we choose the 10 most popular
websites from Semrush (2023) as web content for testing the Generic scenario and select
the 10 best-selling products in each of Amazon (2023)’s top 10 categories for the Shopping
scenario.
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Table 2 Classification of testing scenarios and the corresponding number of extensions.

Scenario | # Ext. ‘Web content used for testing
Generic 40 10 most visited websites selected from Semrush!

10 videos that have 720P resolution and last approximately 10
Video 10 minutes from YouTube or approximately 8.5 hours from Twitch

(depending on the designated websites)?
Web pages that host 10 best-selling products selected from each

Shopping 7 of Amazon’s top 10 categories
Sport 3 10 random player profile pages from ESPN?
GitHub 9 10 projects that contai.n around 2Q lines of code selected
based on the star ranking from GitHub
News 2 10 random press articles: 5 from Naver® and 5 from Daum’
Others 8 80 designated websites: 10 designated websites of each extension

! https://www.semrush.com/blog/most-visited-websites;

2 We chose specific durations to ensure consistency and make sure they are long enough, especially longer
than the measurement period (2 minutes). Twitch, as a live streaming platform, typically has long videos
(e.g., 8 hours), while common YouTube users can only upload videos up to 15 minutes by default (Google,
n.d.). These durations cover the spectrum of realistic usage scenarios for different users.

3 https://www.espn.com;
4 https://news.naver.com; 5 https://news.daum.net.

2.4 Performance Measurement

We study the impact of extensions on the page load time and energy consumption of browsers.
More specifically, the page load time is the time duration that takes for the webpage to load
completely and is measured in seconds. A long page load time (i.e., slow response time) can
result in a poor user experience.

We measure two stages of energy consumption as follows:

— The page load energy consumption measures the amount of energy in joules (a unit of
energy) consumed by the CPU and RAM by the entire system during the page loading
time.

— The stabilized energy consumption measures the energy consumption of the CPU and
RAM by the entire system in joules during a fixed period of time after a webpage has been
fully loaded.

To collect energy measurements, we employ Running Average Power Limit (RAPL) (Howard
David et al., 2010). RAPL® is well-established (H. David et al., 2010; Pereira et al., 2016;
Moura et al., 2015) and leverages hardware performance counters to provide detailed and
precise reading on system energy consumption of the CPUs and memory usage (Giardino
and Ferri, 2016; Khan et al., 2018a). Its accuracy has been validated by various studies (Khan
et al., 2018b; Desrochers, Paradis, and Weaver, 2016; Paniego et al., 2018; Kavanagh and
Djemame, 2019). The results obtained from RAPL provide a measurement of the total energy
consumption in millijoules.

2.5 Testing Procedure

To conduct our experiment, we use a desktop equipped with an Intel i7-4770 @3.4GHz
processor, 32 GB of RAM, running Ubuntu (kernel version: 5.15.0-48-generic) with both

6 https://www.intel.com/content/www/us/en/developer/articles/technical/softwar
e-security-guidance/advisory-guidance/running-average-power-1limit-energy-reporti
ng.html
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Stabilized energy consumption

Finish loading the Finish the
page measurements
Page load time
Page load energy consumption

WiFi and Bluetooth disabled. We use Selenium’, a tool that generates simulation scripts,
to automatically execute a web browser to access designated websites. The Google Chrome
browser of version 104.0.5112.79 (Official Build 64-bit) is utilized in our experiment.

To account for measurement errors, we calculate the minimal number of repetitive
measurements for each performance metric to achieve an acceptable level of accuracy, using
Equation 1 (Jain, 1991).

1 minute for other types
2 minutes for videos

Start loading the
page

Fig. 4 Measurement timeline

100X z1_a/2 X5 *

n=[( ) | M

where n stands for the number of observations required; zj_ /> is the 1 —a/2 critical value
of the normal variate at the desired confidence level (1 —a); s represents the median standard
deviation of the measurements for each website and extension combination; r denotes the
required accuracy; and X represents the median value of the sample mean of the measurements
for each website and extension combination.

We calculate the median standard deviation (s) and the median sample mean (X) of
performance metrics for each extension. 100 measurements of an extension are divided
into 10 sets, each corresponding to a specific website. For each website, we compute the
mean and standard deviation of the 10 measurements. We then take the median of these 10
means to determine X and the median of the 10 standard deviations to determine s. With
a 95% confidence level and a required accuracy of 10%, we obtain the minimal number
of repetitive measurements for the performance metrics based on Equation (1): 9 times for
the page load time, 6 times for the page load energy, and 1 time for the stabilized energy
consumption. The different numbers of repetitive measurements stem from the inherent
characteristics of each metric and the impact of measurement errors. For instance, page load
time might exhibit more variability, necessitating a larger number of measurements to achieve
the desired accuracy level. Stabilized energy consumption, being more stable, requires fewer
measurements to meet the accuracy criteria. In our experiment, we choose an ample number
of repetitive measurements (i.e., 10) that is larger than the largest number required for any
of the performance metrics (i.e., 9).

We use scripts to open and navigate to the designated web pages and simulate users’
activities in practice. To measure each testing scenario, we perform the experiment in the
following steps:

1) Utilize Selenium to launch the Google Chrome browser.

2) Install and configure an extension on demand.

3) Repeat each test case (i.e., each website under each scenario) 10 times to obtain stable
measurements in that testing scenario, as specific energy measurements may vary across
executions of the same testing scenario. For each run of a testing scenario, the local storage

rXXx

7 https://www.selenium.dev
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and caches of the browser are cleaned to avoid that the caches would maintain the results of
the previous experiments. In total, we test and measure the performance of each extension
100 times (i.e., 10 websites, each with 10 repetitions (Georgiou et al., 2022)).

4) Collect performance measurements of energy and running time while the testing
scenario is running, as illustrated in Figure 4.

5) Sleep for one minute to avoid tail power states (Bornholt, Mytkowicz, and McKinley,
2012) to allow the system to reach a stable condition again (idle energy consumption) before
executing the next run (i.e., running the browser to access one website).

6) Terminate the Google Chrome browser for each finished task by closing all windows
and pages, thereby ending the browser session that is opened during measurement.

7) Uninstall the current extension.

8) Repeat 1) to 7) for another extension.

9) Collect the energy consumption of the CPU and RAM as well as the page load time
on each website without any extension.

The page load time and the page load energy consumption are monitored from the time
the webpage starts loading until the webpage completes the loading. Once the page finishes
loading, the stabilized energy consumption of CPU and memory usage is measured for one
minute for non-video testing scenarios and two minutes for the video testing scenario.
We choose the one-minute testing time to reach a balance between the duration of the
measurement and the time resources available for executing all the testing scenarios (it takes
approximately 10 hours to execute the testing scenarios). The two-minute measurement
duration for the video scenario is intended to account for the ad time in videos.

By repeating each experiment 10 times, we obtain stable measurement results across
the page load time, page load energy consumption, and stabilized energy consumption.
These measurement results exhibit good stability, as evidenced by median standard errors
(Curran-Everett, 2008) of 0.050, 0.042, and 0.0035 (calculated from measured metric val-
ues normalized by median normalization in Section 2.6) for the respective metrics. In the
experiment, Selenium initially opens a blank webpage to avoid caches and the impact from
previous runs on the measurements, before the initial page is directed to the testing webpage.

2.6 Normalization

Normalization ensures that measurements are comparable across different websites and
testing scenarios by standardizing them on a consistent scale. For example, normalization
helps mitigate the confounding impact caused by different websites’ performance differences
when assessing extensions’ performance impact in RQ1 and RQ2. For RQ3, we require
normalization to avoid raw values distorting the model’s results. Consequently, to ensure
consistency and comparability of all measurements collected during the testing of extensions,
regardless of the testing scenarios and the websites, we normalize the measurements obtained
with and without the use of an extension. For each extension, the normalized value of the
Jjth (j € 1,2,..,10) measurement of the browser’s performance when accessing the ith (i
€ 1,2,..,10) website (perf_norm; j) is calculated by Equation (2).

perf_ext; ;i

(@3]

erf_norm, ; = -
peri- 7 median(perf_free;)
where perf_ext;; is the raw value obtained by the jth measurement of the browser perfor-
mance while the extension accesses the ith website; and median(perf_free;) is the median
value obtained by the 10 measurements of the browser performance (free of extension) when



12 Bihui Jin et al.

the extension accesses the ith website. Similarly, the performance measures of the browser
in the extension-free mode are normalized by the median value of the 10 measurements for
each website.

3 Experiment Results

The objective of this study is to investigate the impact of extensions on the energy consump-
tion and page load time of browsers through a case study on Google Chrome. This section
describes our research questions, our approaches, and answers to each of them.

3.1 RQI: How do extensions impact browser performance?

Motivation: Extensions are developed to enrich the browser functionality, such as easy
dictionary searching or blocking advertisements. However, practitioners may not be aware
that extensions may cause significant performance impact on browsers, such as extra CPU
computation and memory usage, and increased the page loading time. Adversely, extensions
could result in degraded user experience and impaired performance of other applications
running on the same computer. In this RQ, we strive for understanding the extent to which
extensions affect the overall browser performance.
Approach: We conduct performance evaluations of 72 representative extensions by executing
their corresponding testing scenarios (Section 2.3). For each extension, we execute the
designated websites 10 times with and without the extension installed (Section 2.5). Other
extensions are uninstalled. Measurements are then collected and normalized, as described
in Section 2.6. Subsequently, we perform statistical analysis to understand the performance
impact of the extensions.
Configuring the extensions. Different configurations of an extension may have different
performance impacts®. In this RQ, we consider the expected situation when an extension
is used in the fully-loaded mode: the extension is activated and used for the designated
websites; for extensions that require access and login, we grant the extension access and logs
the extension in. As the baseline, we also measure the performance of the browser when the
extensions are uninstalled (i.e., extension-free mode).
Correlation analysis. To understand the relationship among the different performance met-
rics, we use the Spearman rank p correlation analysis on each pair of performance metrics to
identify the degree of correlation. The reason behind using the Spearman Rank Correlation
is that it does not prerequisite a normal distribution. The Spearman Rank Correlation ranges
from -1 to +1, where +1 indicates a perfect positive association between ranks, O means no
association, and -1 represents a perfect negative association.
Statistical analysis. To quantify how extensions affect the browser performance, we test the
following hypothesis:

HOy: there is no difference in the distributions of performance metric values between the
paired observations of extension-free and fully-loaded modes.

To compare the two distributions of performance metric values (i.e., fully-loaded mode
vs. extension-free mode) for each extension, we apply the Mann-Whitney U test (Mann
and Whitney, 1947) at a 5% significance level to assess whether a statistically significant

8 The performance impact of the extensions’ different configurations (i.e., usage modes) is discussed in
detail in RQ2.
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difference exists. The Mann-Whitney U test, as a non-parametric statistical test, does not
assume a normal distribution. If HO; is rejected (i.e., a statistically significant difference
exists), we further compute the Cliff’s ¢ effect size (a non-parametric method without as-
sumption of a particular distribution) (Cliff, 1993), which quantifies the magnitude of the
differences (J. Romano et al., 2006). The resulting effect sizes are classified into several
qualitative degrees of difference (Benjamini and Hochberg, 1995): negligible (|5| < 0.147),
small (0.147 < |6] < 0.33), medium (0.33 < |§| < 0.474), and large (|6] > 0.474). A larger
effect size signifies a larger difference between the two distributions. Following prior studies
(Tong, Liu, and S. Wang, 2018; Aniche et al., 2016; D. Romano et al., 2012), we choose
the small effect size as the threshold for determining significant differences in the perfor-
mance distributions: the performance comparisons resulting in a negligible effect size are
not considered significant differences.

Performance change ratio. If HO, is rejected, we calculate the change ratio of the per-
formance metric as specified in Equation (3). To reduce the effect of outliers in website
measurements, the median value of each 10 repeated experiments is used.

median(ext;) —median(free;)

3

. . L
Ratio(metric) = 0 ; median(freey)
where Ratio(metric) is the change ratio of the corresponding performance metric of an
extension (i.e., the page load time, the page load energy consumption, or the stabilized energy
consumption); ext; is the normalized performance metric under the fully-loaded mode of
the extension; free; is the normalized performance metric under the extension-free mode
of the extension; median(ext;) and median( free;) indicate the median of the 10 extension
measurements for the i-th website, under the fully-loaded mode and the extension-free mode,
respectively. Finally, i € 1,2, .., 10 indicates the i-th tested website for the extension. The mean
is typically better when the data follow a symmetric distribution. However, our measurement
results exhibit a high variability across different websites. Therefore, we use the median of
measurements in our work, as it is less sensitive to outliers and better captures the central
tendency in performance metrics, ensuring that extreme values from specific websites or test
runs do not skew the results.
Findings: Using an extension can either deteriorate or improve browser performance,
while performance deterioration (especially large deterioration) is more common. Table
3 presents the statistically significant changes in the performance metrics when an extension is
used in its fully-loaded mode. A total of 72 extensions are tested, among which 66 extensions
(i-e., 92%) exhibit a statistically significant performance impact on at least one of the studied
performance metrics. In particular, 40 extensions (i.e., 56%) exhibit statistically significant
changes in the page load time, among which 22 increase the metric value while the other 18
decrease the metric value. 46 extensions (i.e., 64%) exhibit statistically significant changes
in the page load energy consumption, among which 43 and 3 lead to an increase and
a decrease in the metric value, respectively. 53 extensions (i.e., 74%) exhibit statistically
significant changes in the stabilized energy consumption, with 47 and 6 of them increasing
and decreasing in the metric value, respectively. In particular, performance deterioration
dominates the biggest performance changes (i.e., with large effect sizes). For example, 23
extensions lead to large increases, but 0 extension decreases in stabilized energy consumption.
The deterioration in browser performance may be attributed to the extra resources re-
quired to run the extensions, the automatic backend search capabilities of certain extensions,
such as potential coupon detection (e.g., SimplyCodes) and tracking of product price history
(e.g., Keepa), web content adjustments (e.g., Octotree), monitoring of website content (e.g.,
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Table 3 Statistical performance changes caused by the extensions in their fully-loaded mode.

Statistical analysis Mann.- Whitney Chff’? 0
Signif. Small Medium Large

metrics Tendency | Count Ratio | Count Ratio Count Ratio Count Ratio
Page load Increase 22 18% | 11 14% 3 29% 8 19%
time Decrease 18 -6.3% | 11 -42% 5 9.0% 2 -43%

Overall 40 4.0% | 22 0.48% 8 -4.6% 10 18%
Page load Increase 43 17% 14 9.0% 8 18% 21 35%
energy Decrease 3 -7.3% 0 - 2 -6.6% 1 -61%
consumption Overall 46 16% | 14 9.0% 10 15% 22 31%
Stabilized Increase 47 1.8% | 14 1.4% 10 1.3% 23  3.0%
energy Decrease 6 -1.6% 4 -0.95% 2 -3.0% 0 -
consumption Overall 53 1.6% | 18 1.0% 12 0.79% 23  3.0%
# of extensions being tested 72

* This table shows the number of extensions that have a statistically significant effect on each performance metric, including an
increase, decrease, and overall change (increase and decrease), as well as the respective change ratio. The Signif. column counts
extensions with a p-value less than or equal to 0.05. The change ratios are the mean values of the extensions.

* The results of the effect sizes, as determined by Cliff’s ¢, are categorized as Negligible (not reported in the table), Small,
Medium, and Large. The effect sizes are calculated and reported only when the performance impact is statistically significant,
i.e., the p-value is less than or equal to 0.05 in the Mann-Whitney U test.

Dynatrace), and site analysis (e.g., Wappalyzer) during page load. On the other hand, the
improvement in the browser performance may be due to the blocking of web content (i.e.,
Naver/Daum Media Filter and ad blocker: Inforness), simplification of web content (e.g.,
Better Tab), and preventing information trackers (e.g., Neeva).

Page load time is strongly correlated with page load energy consumption (|p|=0.82
> (0.70) but has a negligible correlation with stabilized energy consumption (close to
0) (Schober, Boer, and Schwarte, 2018), as shown in Figure 5. This is because both page
load time and page load energy consumption relate to the loading activity, while stabilized
energy consumption occurs after loading, thus it is not directly associated with the other two
metrics.

Page load time

Page load energy consumption

Stabilized energy consumption
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Fig. 5 The results of Spearman correlations between performance metrics.

22 (31%) extensions statistically significantly increase the page load time, with an
average increase of 18%, while another 18 (25%) extensions statistically significantly
reduce the page load time by 6.3% on average. Over half (40/72) of the extensions lead
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to statistically significant changes in the page load time, with an average change of +4.0%
(increase). In particular, eight extensions lead to an increase in the page load time by a large
effect size, while only two extensions lead to a decrease by a large effect size. Web browsers or
extensions may provide warnings about the extensions’ impact on the page load time when
users install such extensions, suggest users to disable certain extensions when accessing
performance-critical websites, or optimize the extension or browser-extension integration to
minimize the negative performance impact.

Using extensions leads to the largest negative impact on the page load energy con-
sumption, compared to other performance metrics. 46 out of the 72 extensions demon-
strate statistically significant differences in the page load energy consumption, with an average
change of 16% (increase). A statistically significant increase in energy consumption is ob-
served in 60% of the extensions (i.e. 43), with an extra 17% of energy on average consumed.
Conversely, only 4.2% of the extensions (i.e., 3) reduce energy consumption, by 7.3% on
average. In particular, 21 (29%) extensions exhibit a large effect size in the increase of the
page load energy consumption, by an average increase of 35%, while only one extension
decreases the page load energy consumption by a large effect size. Browser developers may
provide more information about the energy consumption of the browser and the extensions
to help users make informed decisions when using an extension and to motivate extension
developers to improve the energy efficiency of their extensions.

Even after the web page has been loaded, 47 (65%) extensions still lead to a statis-

tically significant increase in energy consumption. The majority of extensions, 74% (i.e.,
53 extensions), demonstrate a statistically significant difference in the stabilized energy con-
sumption. 65% (i.e., 47) of the extensions consume an extra 1.8% of the stabilized energy on
average, while 8.3% (i.e., 6) of the extensions reduce the stabilized energy consumption by
an average of 1.6%. In particular, 32% (i.e., 23) of extensions demonstrate large differences
in the stabilized energy consumption, with an energy difference of 3.0%. Compared to the
impact on the load time energy consumption, the extensions’ impact on the stabilized energy
consumption is relatively small. This may be explained by the fact that the extensions are
less active after the pages have been loaded.
Summary: Our results indicate that the use of extensions under the fully-loaded mode can
lead to a statistically significant impact on the browser performance, with the largest negative
impact on the load time energy consumption. Our observations suggest that browser and
extension developers should pay attention to the performance impact of browser extensions.
For example, they may provide warnings and information about the performance impact
of the extensions, suggest users disable extensions in performance-critical scenarios and
optimize the extensions or browser-extension integration in terms of performance.

3.2 RQ2: How do the usage modes of extensions affect browser performance?

Motivation: In RQ1, we have analyzed the effect of the extensions on the browser perfor-
mance in the expected scenario (i.e., the fully-loaded mode). Nonetheless, users may not
always interact with extensions in the intended manner. For instance, a user may ignore the
login process of an extension to utilize the extension. The impact of the extensions under
different usage modes on browser performance remains uncertain. Therefore, it is important
to understand how different usage modes of extensions could lead to varying performance
impacts and to provide insights for browser users to select and configure extensions.

Approach: The usage level of an extension depends on how the user configures and uses it
(e.g., whether the extension is logged in or used with the designated websites). We first provide
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a classification of the different usage modes of the extensions, then perform experiments to
test the performance impact of the different usage modes.

Classifying and testing the usage modes of extensions. Based on the requirements for
extension access and execution (e.g., requirements for login or getting access to a website),
as well as their intended usage scenarios (e.g., used with intended or designated websites),
we classify usage modes of extensions into six categories: extension-free (the baseline),
fully-loaded, no-login, no-grant, non-designated, and fully-inactive, as outlined in Table 4.
Browsing web pages without the extension installed is the extension-free mode, which serves
as the baseline for performance comparison. The usage mode of extensions can be classified
in four modes, considering whether the extension is logged in, granted access to the website,
tested with the designated webpages, and enabled. The description of different usage modes
is listed in Table 4. Except for the fully-loaded mode, not all extensions necessitate certain
conditions (e.g., login): usage modes of extensions are applicable only to partial extensions.
Specifically, all the 72 extensions can be tested in the fully-loaded mode. 13 extensions
can be executed without login (i.e., no-login mode), and 17 extensions are tested in both
the websites that are not designated for the extensions (non-designated mode) and in the
websites such that the permission to access a webpage is not granted (i.e., fully-inactive
mode), respectively.

We evaluate the performance impact of the different usage modes by comparing the
measures of extensions in partial usage modes with both the baseline (the extension-free
mode) and the measurement results of extensions in the fully-loaded mode. All 72 extensions
are selected for testing under the fully-loaded mode (same as in RQ1). We select the extensions
to be tested in the partially loaded modes based on their requirements and usage scenarios.
We test the extensions that require access permission to the tested webpages in the no-grant
mode. We test the extensions that require login in the no-login mode. The non-designated
mode involves testing the inactive extensions that only work for designated websites and is
tested with the context of generic testing scenario websites. The performance of the inactive
extensions is assessed in the fully-inactive mode which does not log in to the extension, not
grant access to the webpage, and is tested with the generic testing scenario websites rather
than the designated websites to the extensions that only work for the designated websites.
We measure a total of 40 extensions across the partial usage modes. Tables 5 and 6 list the
distribution of the number of extensions tested in each usage mode. As shown in Tables 5
and 6, we can compare the extension-free mode with the fully-loaded mode. We follow the
same measurement procedures, as outlined in Section 2.5. The measurements are recorded
and then normalized using the procedure outlined in Section 2.6.

Statistical analysis of the experiment results. Similar to RQ1, we apply the Mann-Whitney
U test and the Cliff’s d test to determine the degree of difference of the measurements between
running a usage mode of an extension and running in the extension-free, as well as between
running a usage mode of an extension and the fully-loaded mode. We test the following two
hypotheses:

HOy: there is no difference in the distributions of performance metric values between the
paired observations in a partial usage mode and the extension-free mode.

HOs: there is no difference in the distributions of performance metric values between the
paired observations in a partial usage mode and the fully-loaded mode.

Performance change ratio. When an extension leads to a statistically significant perfor-
mance difference between the performance metrics under a usage mode and the extension-
free mode or the fully-loaded mode, we calculate the change ratio of the performance metric,
following the same method described in RQ1.
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Table 4 Usage modes of extensions.

Mode Login” Grant" Designateil* Extension Extension Description
name webpage installed enabled
Extension-free 0 0 0 0 - No extensions are installed. (Baseline)
Extension is logged in; extension is
Fully-loaded 1 | | 1 | tested .Wi[’h the designatt?d Webpages;
extension’s access permission to
the webpages is granted (Baseline)
No-login 0 1 1 1 1 An extension is not logged in
Extension’s access permission to the
No-grant ! 0 1 ! ! tested webpages is Eot granted
Non-designated 1 1 0 1 0 An 'extension is not t‘ested with the
designated webpages
Access to an extension and access
Fully-inactive 0 0 0 1 0 permission to a webpage are not granted;
not tested with the designated webpages

w9

1 represents True (i.e., performed); O represents False (i.e., not performed); “-” represents not applicable.
*If an extension does not need to be logged in or to be granted access, it is always considered as being logged in
or granted access.

** A designated webpage of an extension is the webpage that an extension is designed for (e.g., GitHub); the generic
extensions (corresponding to the generic scenario in Table 2) have all webpages as their designated ones. Extensions
with designated websites are designed to be used only on specific sites but not entirely disabled elsewhere. For
instance, such extensions may need to monitor whether the user switches to their designated page, which can lead
to increased energy consumption.

##% Extensions are naturally disabled when accessing non-designated webpages.

Table 5 Comparing the performance impact of different usage modes of the extensions with the extension-free
mode.

Mode No-grant No-login Non-designated | Fully-inactive
Perfqrmance Tendency | Count Ratio | Count Ratio | Count Ratio | Count Ratio
metrics
Page load Increase 2 43% 4 40% 4 20% 6 110%
time Decrease 4 -6.9% 2 -4.8% 0 - 5 -32%

Overall 6 -6.3% 6 25% 4 20% | 11 6.3%
Page load Increase 8 7.5% | 14 18% 5 14% 5 280%
energy Decrease 0 - 0 - 0 - 3 -29%
consumption Overall 8 7.5% | 14 18% 5 14% 8 8.7%
Stabilized Increase 12 2.8% | 15 2.9% 3 1.6% 8 13%
energy Decrease 0 - 0 - 6 -0.78% 3 -28%
consumption Overall 12 2.8% | 15 2.9% 9 -0.43% | 11 8.8%
# of extensions being tested 13 17 11 11

We share our Cliff’s delta results in our replication package.

Findings: Browser performance is impacted by the use of extensions regardless of their
usage modes. The results of testing H0, and HO3 are presented in Tables 5 and 6, indicating
the relative performance impact of the extensions in their four partial usage modes, namely:
no-grant, no-login, non-designated, and fully-inactive, in comparison to the two baselines
(the extension-free mode and the fully-loaded mode). Table 5 shows that all partial usage
modes of the extensions can statistically significantly impact the browser performance in
terms of the studied performance metrics. Overall, 12 out of the 13 extensions (i.e., 92%)
tested with the no-grant mode, 16 out of the 17 extensions (i.e., 94%) tested with the no-login
mode, 10 out of the 11 (i.e., 91%) extensions tested with the non-designated mode, and 11 out
of the 11 extensions (i.e., 100%) tested with the full-inactive mode statistically significantly
impact at least one of the studied performance metrics.
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Table 6 Comparing the performance impact of different usage modes of the extensions with the fully-loaded
mode.

Mode No-grant No-login Non-designated | Fully-inactive
E;a;é(;l;nance Tendency | Count Ratio | Count Ratio | Count Ratio | Count Ratio
Page load Increase 1 15% 5 14% 7 25% 4 200%
time Decrease 2 -6.8% 2 -8.3% 3 -6.5% 4 -36%

Overall 3 -3.6% 7 9.8% | 10 8.4% 8 46%
Page load Increase 2 8.3% 6 6.5% 3 190% 6  220%
energy Decrease 1 -3.0% 2 -5.4% 6 -4% 3 -39%
consumption Overall 3 1.2% 8 5.0% 9 2.6% 9 2.9%
Stabilized Increase 8 2.6% | 11 3.2% 3 1.6% 7 15%
energy Decrease 3 -2.3% 1 -0.92% 5 -4.9% 3 -38%
consumption Overall 11 1.6% 12 3.2% 8 1.3% | 10 11%
# of extensions being tested 13 17 11 11

We share our Clift’s delta results in our replication package.

Using extensions in unexpected circumstances (i.e., when access to a webpage is not
granted or an extension is not logged in) can still lead to impaired browser performance,
especially more energy consumption. For example, 62% of the tested extensions (i.e., 8)
running without a granted permission (i.e., no-grant mode) and 82% of the extensions (i.e.,
14) tested without the required login (i.e., no-login mode) lead to an average of 7.5% and
18% increase in the page load energy consumption, respectively. 88% of extensions (i.e.,
15) in the no-login mode and 92% of extensions (i.e., 12) in the no-grant mode result in a
slight increase in the stabilized energy consumption, leading to an average of 2.8% and 2.9%
increase, respectively. When users opt to disregard the login process of the extensions, it is
observed that approximately 35% of the tested extensions (i.e., 6) significantly contribute to
the page load time, leading to an average delay of 25% on average. In comparison, denying
access permission to the website is more likely to decrease the response time while leading
to an increase in energy consumption during the page load and the stabilized periods. In
particular, 46% of the extensions (i.e., 6) significantly impact the page load time, resulting in
an average of 6.3% decrease on average. Under unexpected circumstances, extensions may
not be able to utilize their full functionality to efficiently load and interact with web content,
leading to suboptimal performance and potential disruptions during browsing activities.

Even when extensions are not used for their designated websites (e.g., TubeBuddy
for Videos) or are fully deactivated, they can still lead to significant energy consumption
and increase the page load time. In particular, 8 to 11 (73% to 100%) of the extensions
tested under the fully-inactive mode significantly impact the studied performance metrics.
Such observation may be attributed to the fact that extensions may still run background
processes and built-in functionalities or scripts, consuming resources even when they are not
actively being used. The non-designated mode results in statistically significant changes on 5
extensions (45%) in the page load energy consumption by an average of 14% on average. The
negative performance impact of the non-designated modes may be because the extensions
make attempts to access the web content when a webpage is loading, which may cause
significant extra overhead.

The partial usage modes of extensions can lead to even worse performance impact
than the fully-loaded mode. Table 6 indicates the relative performance impact of the different
usage modes in comparison to the fully-loaded mode. Surprisingly, all partial usage modes
can lead to a worse performance impact even than the fully-loaded mode. For example, 8
out of the 17 extensions (i.e., 47%) tested under the no-login mode exhibit a statistically
significant increase in the page load energy consumption in comparison to the fully-loaded
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mode, leading to an average increase of 5.0% in the metric value. 8 out of the 11 extensions
(i.e., 73%) tested under the fully-inactive mode significantly impact the page load time over
the fully-loaded mode, with an average increase of 46%. When extensions are not used in
the intended mode (i.e., fully-loaded), they still run and consume resources (e.g., through
continuous attempts of obtaining access), which may consume more resources and lead to
worse user experience than the fully-loaded mode. The surprising results indicate the need
for better performance testing of the extensions under the unintended usage scenarios.
Summary: We observe that browser performance can be negatively impacted by the use
of extensions even when they are used in unexpected circumstances (e.g., not logged in or
access to a webpage not granted) or are not active (e.g., not used for designated websites).
Surprisingly, unintended usage scenarios of extensions can even lead to worse performance
impact than the fully-loaded mode. Extension users should be aware of such performance
impact to optimize their configurations of the extensions (e.g., avoiding improper use). Our
findings also suggest that browser and extension developers should take action on reducing the
performance impact of extensions under unintended usage scenarios (e.g., better performance
testing and optimization for such scenarios).

3.3 RQ3: What factors of extensions influence browser performance?

Motivation: Browser extensions are designed with various characteristics, such as the
adopted privacy practices and usage modes to provide users with various functionalities.
In RQ2, we have observed that different usage modes of extensions lead to different impacts
on the browser performance. In this RQ, we are interested in understanding multifaceted
factors that can significantly influence browser performance. We want to unravel the inter-
play of these factors. With such insights, extension developers can use the knowledge of
performance influencing factors to optimize their extensions. Moreover, extension users can
make more informed decisions to select extensions that best meet their needs by considering
various factors that may potentially affect the browser performance.

Approach: We extract a set of factors (e.g., code metrics) of the extensions and leverage a
statistical model to understand the influential factors.

Extracting extension factors. Table 7 lists 105 considered factors of the extensions. We
consider the common factors that might impact performance from five aspects, including
code metrics, file characteristics, privacy practices, user perspectives, and usage modes of
extensions. We employ SciTools” Understand’ to analyze the code metrics of the extensions,
e.g., Lines of Code (LOC) and Number of Children (NOC). The Understand tool evaluates the
code using various code metrics'? and also provides entity information, such as the number of
classes and public methods utilized in the extension. We consider the code metrics proposed
by Chidamber and Kemerer (1994) and Lorenz and Kidd (1995). Beyond the code metrics
and entities, we take into account the types of collected data and file characteristics (e.g., the
file size in different kinds of files related to the extension, such as the size of .png typed files).
72 compressed extension projects (i.e., .crx files) are extracted via the online web tool'! to
obtain the source code. Besides code metrics, we complement additional factors as per the
inherent nature of the extensions, including the belonged categories, user perspective, and
usage scenarios (i.e., usage modes). A total of 105 potential factors of the extensions that
may impact the browser performance are listed in Table 7.

9 https://scitools.com/
10 https://documentation.scitools.com/pdf/metricsdoc.pdf
11 https://crxextractor.com/
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To understand the interplay of these factors on the browser performance, we construct a
statistical model. The dataset is collected from the same experiment performed in Section
3.2, and the characteristics of the extensions (e.g., extension category) are collected based
on the steps described in Section 2.1.

Table 7: Studied factors that may influence the performance impact of browser
extensions.

Variable Type

Potential Influential Factors

Description

Ambient Module

Class

ClassFunction

Enum

File

Interface

Method

Namespace

Private Method

Public Method

Public Static Method

Function

Unnamed Function

WMC (Weighted Methods per Class)
DIT (Depth of Inheritance Tree)

ev(G) (Essential complexity)

Number of ambient modules

Number of classes

Number of class functions

Number of enum classes

Number of files

Number of interfaces

Number of methods

Number of namespaces

Number of private methods

Number of public methods

Number of public static methods
Number of functions

Number of unnamed functions

Number of local (not inherited) methods
Maximum depth of class in inheritance tree
The number of decision points + 1

after control graph reduction

Code Metric | CC (Cyclomatic Complexity) The number of decision points + 1
NPATH (Number of Possible Paths) Number o'.f unique paths chough a body of code,
not countingabnormal exits or gotos
CLOC (Comment Lines of Code) Number of lines containing comment
LOC (Lines of Code) Number of lines containing source code
BLOC (Blank Lines of Code) Number of blank lines
NL (Number of Lines) Number of Lines
NPM (Number of Public Methods) | Number of local (not inherited) public methods
NPRM (Number Private Methods) Number of local (not inherited) private methods
RFC (Response for a Class) Number of methods, including inherited ones
NIV (Number of Instance Variables) | Number of instance variables
NIM (Number of Instance Methods) | Number of instance methods
NV (Number of Variables) Number of class variables
NOC (Number of Children) Number of immediate subclasses
IFANIN Number of immediate base classes
Ellllflracteristic Sizes of different type of files Size of various types of files in the extension
Total # of Privacy Practices Used Number of privacy prf'ictice properties
adopted by the extension
Privacy Locatlon. . Seven privacy practice items
Practice User Activity adopted by the extension

Website Content

Continued on next page ‘
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Table 7 — continued from previous page

Variable Type Potential Influential Factors Description

Web History

PIIL

Authentication Information
Personal Communications

Number of Users Number of users installing the extension
. Number of Raters Number of users rating the extension

Perspective . . . .

Extension Size The extension package size

Rating Score The rating score of the extension

in Chrome Web Store

Logged in

Access to webpage granted
Usage Mode Non-designated mode Four usage modes of extensions

Fully-inactive mode

P.LIL refers to Personally Identifiable Information
The complete list is put in the replication package.

Redundancy analysis. Variable selection is incorporated into the model-building proce-
dure to aid in raising the accuracy (Giglio and Brown, 2018; H. Zou and Hastie, 2005),
whereas redundancy is not considered, as redundant predictors unnecessarily deteriorate the
performance of the regression models (Xue et al., 2016; Lin et al., 2015). To uphold model ro-
bustness and minimize complexity, we conduct a redundancy analysis before building models
to avoid redundant factors that could interfere with each other using the redun function from
the Hmisc library in R. To detect if a variable is redundant, a multivariate regression model is
constructed for each explanatory variable, treating it as the response variable and using other
variables as explanatory variables. The fit of these models is measured using R statistics.
A high R? value indicates redundancy, as it shows how well each explanatory variable is
explained by other variables, thereby helping to identify which variables are redundant. This
analysis assesses the redundancy correlation among the 115 identified factors. Factors that
can be explained by other factors with an R? larger than 0.90 are deemed highly redundant
and thus eliminated from the result set. As a result, 24 factors (i.e., Ambient Module, Inter-
face, Namespace, Private Method, Enum, Class, Class Function, Public Method, Unnamed
Function, Method, File, NIM, NPRM, NPM, DIT, RFC, ev(G), NIV, NL, CC, IFANIN, WMC,
CLOC, and BLOC) among the code metrics, 40 factors (i.e., Size of .mem, .data, .psd, .send-
keys, .datepick, .tz, .blockUI, .dat, .vtt, .otf, .mjs, .1, .6, .ts, .patch, .targ, .lock, .opts, .cjs, .in,
.def, .jst, .coffee, .htm, .zip, .avif, .config, .md, .mp4, .conf, .sortable, .webm, .js, .woff2, .html,
.ixt, .gif, .woff, .ico, .css, and .xml files) among the file characteristics, extension size, and
total number of privacy practices used are redundant and not considered in our model. In the
end, we keep 37 factors after the redundancy analysis for inclusion in our model.

Model Construction and Evaluation. To study the interplay of the factors on performance
metrics (e.g., the page load time), we build elastic net regression models (Friedman, R.
Tibshirani, and Hastie, 2010; Simon et al., 2011; Tay, Narasimhan, and Hastie, 2023) using
the extension factors as explanatory variables and the performance metrics as response
variables. We use the train function (Kuhn, 2008) provided by the caret library in R
to construct elastic net regression models for each performance metric with the gaussian
method. We normalize each factor by dividing each value by the largest value in the dataset,
which facilitates the convergence of coeflicients.
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In the quest for finely tuned hyperparameters, we utilize the trainControl (Efron and

R.J. Tibshirani, 1994; Efron, 1983; Kuhn, 2014) from the caret package. We opt for adaptive
resampling (adaptive_cv), employing adaptive cross-validation for a total of 100 times
parameter tuning. We assess each performance metric with regard to extension factors in the
tuning process. This process leverages the Bradly-Terry resampling method, which manages a
substantial number of tuning parameter settings, incorporated with a random search (Bergstra
and Bengio, 2012) to ensure comprehensive coverage. To understand the fitness of the tuned
model, we explore a range of tuning parameter combinations (i.e., tuneLength) through a
random search. In essence, tuneLength signifies the scope or breadth of the search space
for optimal tuning parameters. We systematically vary the tuneLength within the range of 1
to 300, allowing for a comprehensive evaluation of model fitness across different parameter
settings. The criteria for selecting the optimal model hinges on the root-mean-square error
(RMSE), which is also chosen by the function selection in fine-tuning process by default.
The model with the lowest RMSE is targeted. RMSE is used to select the optimal model
using the smallest value. As a result, our elastic net regression models illustrate an RMSE of
0.020 for the page load time, 0.043 for the page load energy consumption, and 0.067 for the
stabilized energy consumption, respectively. Given that the metrics are normalized between
0 and 1, these RMSE values are relatively low, indicating that the model performs well in
capturing the underlying patterns in the data, which supports the fitness of our models.
Analyzing the influences of the factors. Features with a non-zero coefficients are significant
and relevant for the model, as the non-significant ones are already pruned by the lasso penalty.
We determine the effect direction of a significant factor to indicate whether a significant factor
has a positive or negative impact on a performance metric. The effect direction of a significant
factor is in fact the sign (+ or —) of the coefficient of the significant factor in the elastic net
regression models.
Findings: Our model analysis comports with the observations in RQ2, confirming that
the usage modes of extensions significantly affect the browser performance. Logged-in
extensions tend to have a faster page load time and lower energy consumption. The negative
relationships between Logged in and the performance metrics suggest that logging in to
the extension can improve browser performance. Therefore, it is recommended that users
log in to the extension when prompted to do so. Besides, it is advisable for users to grant
permission to the extension to access the webpage, as indicated by the negative correlation
shown in Table 8 - Usage Mode. The negative correlation suggests that granting permission
(i.e., Access to webpage granted) leads to an improvement in energy consumption. The
significance of the factor non-designated mode and its positive correlation with the energy
consumption metrics imply that improper use of extensions can negatively impact browser
performance on energy consumption. Similarly, it is observed that the fully-inactive mode
significantly jeopardizes the browser performance. In summary, adhering to proper usage
scenarios, i.e., logging in to the extension, granting access to websites, and utilizing
extensions on the designated websites, can benefit the overall browser performance.

Collection of user information by extensions (i.e., adoption of privacy practices) can
lead to a significantly negative impact on energy consumption. For example, utilizing au-
thentication information within an extension is associated with an increase in the stabilized
and page load energy consumption. When authentication information is retrieved, it often in-
volves communication with external servers, ongoing data transfers, and periodic page alive
detection, leading to increased energy usage. The use of personal communications is cor-
related with increased energy consumption. The personal communication practice monitors
information, such as emails, texts, and chat messages, which involves continuous background
processes and monitoring that may require active network connections and processing power,
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resulting in increased energy consumption. Moreover, analyzing and processing personal
communications data in real-time can also introduce additional computational overhead,
consuming more energy resources. To understand our findings, we post our results to the
Chrome extension developer forum, one explains that the additional energy consumption
related to authentication information and personal communication is attributed to the use of
APIs and network communications by extensions. Most of the extensions utilize the same
thread as that of the browser rather than employing a Worker to perform such tasks. This
approach ultimately contributes to higher energy consumption and places an increased load
on the browser.

Table 8 The significance of the extension factors for explaining the performance metrics (based on the linear
mixed-effects models).

Page Load Page Load Stabilized
Time Energy . Energy .
Consumption | Consumption
Type Measurement Coefficients
Number of Functions 7.6e-03
Number of Public Static Methods 1.5e-03
. Code complexity
Code Metric (NPATH - Number of unique paths 11e-03
through a body of code)
Number of Lines of Code -3.8e-03 -14e-03
Number of Lines
Number of Children/subclasses -0.47e-03
Size of .svg files 6.4e-03
Size of .png files -4.9¢-03 -13e-03
Size of .eot files -1.3e-03 -13e-03
Size of .json files 2.3e-03
Size of .ttf files
Size of .ogg files 3.4e-03
Size of .map files
File Size of .jpg files
Characteristic Size of .bak files -4.5e-03
Size of .mp3 files
Size of .wasm files 2.9e-03

Size of .scss files
Size of .less files
Size of .drconf files 1.2e-03 5.3e-03
Size of .url files
Size of .log files
Size of .wav files

Location -0.88e-03 -8.5e-03
User Activity 4.3e-03 -5.7e-03
Website Content 3.2e-03 8.5¢-03
Privacy Practice | Web History -0.75e-03
PLIL -0.20e-03 -2.7e-03 0.88e-03
Authentication Information -0.078e-03 4.5e-03 8.7e-03
Personal Communications 5.1e-03 4.6e-03
User # of Users
Perspective # Of. Raters
Rating Score 0.11e-03 -4.2e-03
Logged in -0.32e-03 -1.8e-03 -4.0e-03
Usage Access to webpage granted -0.61e-03 -4.2e-03
Mode Non-designated mode 5.2e-03 6.5¢-03

Fully-inactive mode 0.75e-03 27e-03
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Using website contents exhibits a positive correlation in both page load energy
consumption and stabilized energy consumption, emphasizing that curtailing the use
of website contents could result in deteriorated browser performance. Website contents,
such as images, scripts, and multimedia elements, can engage users to spend more time on
the webpage and require ongoing network requests and data transfers, resulting in additional
energy consumption. During a page load, the positive correlation suggests that engaging
content may contribute to the increased energy consumption, possibly due to the rendering of
dynamic and interactive elements. For stabilized energy consumption, the positive correlation
indicates that the ongoing user engagement may involve periodic updates, animations, or
dynamic content, which can contribute to sustained energy consumption. However, this may
lead to a more satisfying user experience, justifying the positive correlation. Moreover,
monitoring website contents could lead to increased stabilized energy consumption, as the
system remains active to support ongoing interactions and content updates.

While monitoring location and user activity in the background can be resource-
intensive, consuming unnecessary energy, a negative correlation observed between
monitoring location and user activity and the stabilized energy consumption suggests
a potential avenue for enhancing browser performance. The collection of location and
user activity information occurs during the page load phase, as evidenced by the positive
(i.e., 4.3e-03) and nearly positive (i.e., -0.88e-03) relationships between location and user
activity and the page load energy consumption. Stabilized energy consumption pertains to
the period following the page load while the user interacts with the loaded content. By miti-
gating the energy-intensive background processes associated with location and user activity
during the stabilized period, such as reducing the frequency of background processes during
low user activity and intensifying it during active user engagement, the browser ensures
energy efficiency. Consequently, such actions can significantly improve the stabilized en-
ergy consumption, albeit at the cost of a potential negative impact on the page load energy
consumption.

A greater number of lines of code (LOC) does not necessarily result in higher energy
consumption, but the augmented count of unique paths through the code (NPATH)
does. In the Code Metrics group, various metrics are evaluated for their impact on energy
consumption. Notably, the number of lines containing source code (LOC) demonstrates a
substantial negative effect, as shown in Table 8 (Code Metric), suggesting that an increase in
the number of LOC that make up extensions does not necessarily lead to a negative impact on
energy consumption (i.e., both stabilized and page load energy consumption) but may exhibit
the opposite effect. Plausible explanations are: a larger codebase allows for more efficient and
optimized implementations. A well-structured and streamlined codebase, even if extensive,
may have undergone optimization practices that enhance energy efficiency. Additionally, a
larger codebase indicates a mature and well-maintained extension. Developers who invest
time in refining and optimizing their codebase may prioritize user experience as part of their
development practices, which could lead to a more resource-efficient extension, resulting in
lower stabilized energy consumption.

The positive relationship between code complexity (i.e., NPATH) and the stabilized
energy consumption suggests that increased code complexity, as indicated by a higher
number of unique paths, is associated with higher stabilized energy consumption. One
example of NPATH is shown in Figure 6, and another example is when using the sscanf
function in C to read data from a string, where can result in n times reading (i.e., executions)
through this single statement (i.e., NPATH = n) if the string subsumes n lines. Developers
are advised to consider strategies, such as adopting switch statements or hash maps to insert
projects to reduce code complexity and steering away from approaches like sscanf that may
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contribute to elevated stabilized energy consumption. For example, developers can use the
hook function rather than sscanf to read data when needed.

The number of functions is impactful on stabilized energy consumption, indicating
a strong positive relationship that an increase in the number of functions in extensions
positively correlates with degraded browser performance in terms of stabilized energy
consumption. An elevated count of functions in extensions typically leads to heightened
overhead execution, including an increase in callbacks and event handling, as well as the
introduction of complex interdependencies. This complexity can give rise to frequent inter-
actions and updates, causing the browser to grapple with the management and coordination
of various functions. Thus, suboptimal performance during the stabilized phase may ensue
that in turn lead to increased energy consumption during the stabilized phase. Additionally,
an increase in the number of functions can lead to resource fragmentation. In this context,
both the browser and the extension may engage in frequent allocation and deallocation of re-
sources. Due to the unavailability of certain resources, one or more of the available resources
remain underutilized or unutilized (Mishra and Bellur, 2016). This resource fragmenta-
tion introduces inefficiencies in resource management, thereby adversely affecting energy
consumption during the stabilized phase.

Fig. 6 A NPATH example in python.

# NPATH = 4: (a,b) — (1,1), (1,0), (0,1), (0,0)
# where (1,1) means functions go_a and go_b are called

; # Each if —statement yeilds two paths (i.e., True — call the function and False — do nothing and

go to the next).
def npathDemo (a, b):
if a:
go_a()
if b:
go_b()

The size of various file types within the source files of extensions exhibit diverse
effects on energy consumption. For instance, the file characteristics outlined in Table 8
reveals a negative correlation between the size of .png and .eot typed files and energy
consumption, implying that an increase in the utilization of image files (.png) and OpenType
font files for webpages (.eot) does not result in heightened energy consumption; instead, it
suggests a favorable impact. In contrary to the .png typed files, .svg typed files, which are also
image files, have a negative impact on stabilized energy consumption. SVG images consist
of a set of instructions that require execution, while png files are composed of pixels that can
be loaded more efficiently. It is advisable for developers to take into consideration the impact
of file types on browser performance. For instance, it is recommended to substitute the use
of .svg files with .png files and consider employing .mp3 or .wav files, which exhibit no
significant correlation with browser performance, as opposed to .ogg audio files to enhance
the overall browser performance.

Summary: Both the privacy practices and usage modes of extensions significantly impact
browser performance. Adhering to proper usage practices, i.e., logging in to the extension,
granting access, as well as utilizing the extension on the designated websites, benefits the
overall browser performance. Besides, it is crucial for extension developers and users to
remain vigilant regarding the impact of privacy practices (i.e., collection of user data) on
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energy consumption when adopting or accepting the privacy practices. Extension developers
are suggested to consider using separate Worker threads to perform tasks rather than relying
on the main browser thread to optimize the extensions. In the context of source code, we
recommend that developers focus on reducing code complexity, e.g., adopting hash maps,
and minimizing the use of a high number of functions which help mitigate the associated
rise in stabilized energy consumption. Furthermore, when constructing extension projects,
it is advisable to flexibly employ certain file types, such as PNG and EOT files, to optimize
performance.

4 Implications

In this section, we discuss the implications of our findings for extension users, extension and
browser developers, and future researchers.

4.1 Implication for Extension Users

Extension users should be aware of the performance ramifications associated with
different usage modes of extensions to optimize their configurations of the extensions.
As noted in the findings of RQ1 (Section 3.1) and RQ2 (Section 3.2), browser performance
is negatively impacted by the use of extensions, irrespective of the specific usage mode of
extensions. Such an observation implies that even when extensions are not activated, they
can still adversely impact the browser performance. Findings from RQ2 could contribute to
establishing best practices for extension users. Extension users should carefully consider the
usage mode of extensions while using the extension and only activate the extension that is
indispensable. Moreover, they should also periodically scrutinize their extensions and remove
any that are no longer needed. By optimizing the configurations of the extensions, users can
improve the overall performance and refine the user browsing experience by reducing page
load time and minimizing energy consumption.

Extension users could select fungible extensions that have minimal impact on
browser performance. As highlighted in the findings of RQ3 (Section 3.3), we discuss
the factors that correlate with performance changes. Extension users can select a substitute
that offers similar functionality with less impact on the browser performance based on the
influential factors (e.g., privacy practices or extension package sizes) as discussed in RQ3.
Therefore, users can mitigate the negative impact on browser performance while still fully
utilizing the functionality they need.

4.2 Implication for Browser and Extension Developers

Browser and extension developers should pay attention to the performance impact of
browser extensions, particularly in regard to energy efficiency. In RQ2 (Section 3.2),
we find that using extensions can cause performance deterioration to the browser, which
may lead to a poor user experience. Therefore, it is crucial that browser and extension
developers prioritize optimizing the performance of their extensions to ensure that their
extensions consume minimal resources while still providing the intended functionalities
to the users. In addition, developers can gain insights into which usage modes are more
likely to influence performance and consider these factors during the development process,
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leading to more efficient and reliable extensions. To enhance user satisfaction and decrease
the negative impact on the browser performance, we recommend browser and extension
developers to take heed of the performance impact of browser extensions by improving the
code quality, prioritizing essential content, optimizing resource loading, minimizing data
transfers, and utilizing proper privacy practices for the extension. Furthermore, they should
regularly maintain their extensions to ensure that extensions are up-to-date and compatible
with the latest browser versions.

4.3 Implication for Future Research

Researchers focusing on performance and energy profiling could provide mechanisms
to mitigate the adverse performance impact of extensions that are not used in expected
scenarios (e.g., when in a non-designated mode), particularly when they are in a fully-
inactive mode. As discussed in RQ3 (Section 3.3), highly-rated extensions and extensions
with a larger extension size tend to have lower energy consumption. Privacy practices
used within extensions can also have varying impacts on the browser performance. Thus,
future researchers could verify whether poorly optimized extensions can consume significant
amounts of energy and slow down the browser. Such effects can be particularly troublesome
for users who have multiple extensions installed, as the cumulative effect of extensions can
lead to significant performance degradation. Hence, it is recommended that performance and
energy profiling researchers could use our proposed approach in RQ3 (i.e., linear mixed-
effects models) to develop mechanisms that can detect when an extension is not being used or
not providing useful functionalities to users and automatically deactivate such extension to
reduce the performance impact of extensions. Moreover, future work may (1) extend our work
to evaluate the performance impact of extensions on other browsers; (2) explore additional
factors, such as programming language used and manifest versions, which may influence
extension performance; and (3) consider including an additional cluster of extensions that
do not disclose privacy practices to further generalize the results and better understand their
performance implications.

5 Threats to Validity

In this section, we discuss the threats to the validity of the study.

Threats to Internal Validity. In our study, around 90% of the total extensions, gathered
in Section 2.1, are removed. 60% of the total extensions without privacy practice specifi-
cations are discarded because of their untraceable structural information for later analysis
and noncompliance with Google’s policy. Given the vast number of extensions available, it
becomes impractical to study each one individually. We opt to cluster the rest of extensions
and select the representative one from each category to stand in for the entire group. To en-
sure diverse representation across the 11 categories in our dataset and to alleviate the impact
without adopting privacy practice specifications, we complement 11 additional extensions
that developers disclose without adopting any privacy practices. In addition, the sample of
extensions studied may not be representative of the broader population of extensions, which
could introduce sampling bias. To mitigate this, we keep the selection of extensions diverse,
reflecting different categories, popularity levels, the use of different privacy practices, and
functionalities. We primarily rely on the median of measurements to assess the performance
of browsers. Although more robust against outliers than the mean values, median values may
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overlook subtle patterns that the mean might capture but is preferred due to the variability
in repeated tests across websites. In RQ3, we use the elastic net regression model to study
the relationship between the various factors of an extension and its impact on performance.
However, the correlation may not suggest causation. To mitigate this threats, we have pro-
posed 105 possible factors to consider as many factors as possible. Nonetheless, there may
still exist other confounding factors not considered in this study.

Threats to External Validity. In this work, we only studied the Google Chrome browser.
Our results may not be generalized to other browsers. Nevertheless, as Chrome is the most
popular browser, our findings can benefit a large number of browser users and extension
developers. In addition, popular browsers such as Chrome and Safari are using similar
architectures. Our findings may provide similar insights for other browsers. Moreover, our
results may not apply to extensions outside the studied sample although they are highly
representative in their use. For example, our results may not generalize to extensions of
other browsers or extensions not available on the Chrome Web Store. Compared to prior
studies (e.g., 3 extensions tested on Pearce (2020)’s work, 5 extensions tested on Merzdovnik
et al. (2017)’s work, and 8 extensions tested on Borgolte and Feamster (2020)’s work), our
extension numbers (72) outweigh theirs, and our extensions types are more comprehensive.

Threats to Construct Validity. Threats to the construct validity of our study may
involve network instability, running background processes and daemons, such as a routing
daemon that handles multiple routing protocols and replaces routed, which may impact the
stability of our measurements. It is challenging to achieve complete control over network
stability and all background processes or daemons of a system. However, we try to reduce
the impact of background processes and daemons as much as possible by stopping them
while we collect the measurements. We assume a certain users’ usage patterns when we use
Selenium to simulate users’ interactions with extensions in distinct usage modes of extension.
Nevertheless, individual user settings and preferences are unpredictable. Despite our efforts
to account for various common conditions and settings, our findings may not be generalizable
to cover all the possible real-world user interactions with extensions.

6 Related Work

In this section, we present prior work with respect to browser and extension performance.

6.1 Browser Performance

Studies, such as Macedo et al. (2020), Janssen et al. (2022), and Tian and Ma (2019),
investigate the run-time performance and the energy consumption of browsers and web
applications. Macedo et al. (2020) compare the energy consumption of Google Chrome and
Mozilla’s Firefox when browsing webpages and find that Google Chrome is more energy-
efficient when navigating web pages, but uses more energy for RAM, particularly when
interacting with YouTube. Janssen et al. (2022) conduct a study to investigate the effect
of the Critical CSS technique on the run-time performance and the energy consumption of
Android mobile web applications in Google Chrome and Mozilla Firefox. Janssen et al. find
that the technique can positively improve the run-time performance of Android mobile web
apps slightly, but it has no significant impact on energy consumption. Tian and Ma (2019)
analyze the quality of user experiences across three mobile browsers - Chrome, Firefox, and
Opera - by collecting data from 337 webpages and analyzing the loading time and cache
performance. Tian et al. show that a significant proportion of webpages exhibit notable
variations in terms of loading time and cache performance across different browsers.



Impact of Extensions on Browser Performance: An Empirical Study on Google Chrome 29

Prior work (Janssen et al., 2022; Tian and Ma, 2019; Macedo et al., 2020) focuses on
examining the browsing performance across various browsers but does not explore the impact
of browser extensions on browser performance. Our work, in contrast, studies the impact of
extensions on browser performance.

6.2 Extension Performance

In comparison to the studies discussed in 6.1, prior studies, such as Pearce (2020), Merz-
dovnik et al. (2017), and Borgolte and Feamster (2020), delve deeper into the effect of
privacy-focused browser extensions on browser performance. Pearce (2020) explores the
potential of three open source advertisement (ad) blockers to reduce the page loading time
by eliminating ads from internet browsing and video streaming. The evidence indicates that
ad blockers are effective in saving energy due to their ability to shorten page loading time.
Merzdovnik et al. (2017) evaluate the effectiveness and the system performance impact of
5 anti-tracking extensions (e.g., Ad-Block Plus) across 100,000 websites. The results show
that these anti-tracking extensions do not increase CPU time, however, they consume more
memory. The metrics used in the study, such as memory consumption, are comparable to the
performance metrics used in our study. Borgolte and Feamster (2020) analyze the impact
of eight privacy-focused browser extensions (e.g., Ad-Block Plus and Privacy Badger) on
user experience and system performance in both Google Chrome and Mozilla Firefox. Over-
all, the results indicate that these privacy-conscious extensions do not impede the system
performance and even improve the user’s browsing experience.

Prior studies (Pearce, 2020; Merzdovnik et al., 2017; Borgolte and Feamster, 2020)
predominantly focus on the examination of a single type of extensions, particularly those
associated with activity blocking. Our study, however, stands out by encompassing repre-
sentative extensions from 11 diverse categories, which cover various functional types of
extensions. In addition, our study considers a different set of performance metrics (e.g.,
including energy consumption) and delves deeper to understand how different usage modes
and other factors of the extensions (e.g., privacy practices) influence the browser perfor-
mance. Although our study focuses on a smaller set of websites, the websites used in our
experiments are highly representative, as they are selected from 11 categories in Google
Chrome web store and commonly utilized by users worldwide. Therefore, our findings still
hold the relevance and provide valuable insights into the performance of different extension
types across widely-used online platforms.

7 Conclusion

In this paper, we study the impact of extensions on browser performance, specifically in
terms of page load time and energy consumption. We observe that browser performance
can be negatively impacted by the use of extensions, even when the extensions are used in
unexpected circumstances (e.g., not logged in or access to a webpage not granted) or are not
active (e.g., not used for designated websites or fully deactivated). We also observe that the
privacy practices of an extension are significantly correlated with its performance impact.
Our work provides the following recommendations for extension users and extension or
browser developers:

— Browser and extension developers should be vigilant about the performance impact of
browser extensions, particularly in regard to energy efficiency. For example, they could



30 Bihui Jin et al.

provide warnings and information about the performance impact of the extensions or
suggest users to disable the extensions in performance-critical scenarios.

— Extension developers and users should be aware of the performance impact of different
usage modes of extensions. Users are suggested to adhere to the proper usage practices
of extensions (e.g., granting login to an extension when required), while developers are
suggested to spend more effort on the performance testing and optimization of the intended
usage scenarios of extensions.

— When constructing extension projects for optimal performance, extension developers
should be mindful of the influence of code complexity and the usage of certain file
types. For example, reducing code complexity (e.g., adopting hash maps) and minimizing
the use of a high number of functions are helpful to mitigate the associated rise in stabi-
lized energy consumption. Moreover, it is advisable to flexibly employ certain file types,
such as using PNG files in place of SVG, and using EOT files in place of other font files,
to optimize performance.

— Extension developers and users should pay attention to the potential performance impact
associated with privacy practices when adopting or accepting privacy practices for an
extension. Extension developers are advised to optimize extensions by utilizing a dedicated
Worker thread for tasks instead of relying solely on the primary browser thread. Extension
users, in turn, should be aware that privacy practices (e.g., website contents and personal
communication) could drain more energy consumption, and this consideration should
influence their choices when selecting extensions.

In the future, researchers may extend our dataset to include more extensions that do not
disclose privacy practices to better understand their performance implications. Furthermore,
future work can explore additional factors (e.g., programming language used and manifest
versions) that may influence extension performance.
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A Appendix A: The number of downloads of selected 71 extensions

Table A.1: Download details for 72 selected extensions.

Extension Name

Extension ID

Number of downloads

O 001NN AW~

LM Note Generator For ESPN Fantasy Football
Picwatermark

Dark Mode - Night Eye

7TV

Neeva Search + Protect for Chrome
Ultimate Video Translator

Better Tab: Speed Dial, News Feed & To-do
Send to Google Maps

Octotree - GitHub code tree

Truffle. TV (formerly known as Mogul. TV)
Tab Resize - split screen layouts

LINER - Search Faster & Highlight Web/Youtube
Watch2Gether

Adblock for Youtube™

Image Downloader

BuiltWith Technology Profiler
Sourcegraph

AmazingHiring

Ecosia - The search engine that plants trees
Dark Reader

FrankerFaceZ

Microsoft Rewards

GoFullPage - Full Page Screen Capture
Trusted Shops extension for Google Chrome
webpage cloner

Tumblr — Post to Tumblr

Elfster’s Elf It!

Dynatrace Real User Monitoring

Use Immersive Reader on Websites

Tricky Enough

FantasyPros: Win your Fantasy League
SimplyCodes | Coupons that work.
NekoCap

Pinterest Save button

Wappalyzer - Technology profiler
coffeelings

Stem Player Album Upload

Boxel Rebound

Ampie

Weather

Enablement Assistant

OkTools

Designer Tools

ER-help Extension

Automation 360

RSS Reader Extension (by Inoreader)
Inforness

NFL Live Scores

Naver/Daum Media Filter(] o] ¥/th2 +22 AZ A} FA)/A}eh)
Bulk Image Downloader

imgur Uploader

JobsAlert.pk

Lichess Opponent Form

ahcblhpcealjpkmndgmkdnebbjakicno
aiiimepjikpdipbpmknolbnjbeohbmaa
alncdjedloppbablonallfbkeiknmkdi
ammjkodgmmoknidbanneddgankgfejth
aookogakccicaoigoofnnmeclkignpdk
bboamecjefgpaemgfpcjeediamdnkklc
behkgahlidmeemjefcbgieigiejiglpc
bhggankplfegmjjngfmhfajedmiikolo
bkhaagjahfmjljalopjnoealnfndnagc
bkkjeefjfjcfdfifddmkdmcpmaakmelp
bkpenclhmiealbebdopglffmfdiilejc
bmhcbmnbenmcecpmpepghooflbehcack
cimpflimgeipdhnhjohpbehjkcdpjolg
cmedhionkhpnakcndndgjdbohmhepckk
cnpniohnfphhjihaiiggeabnkjhpaldj
dapjbgnjinbpoindlpdmhochffioedbn
dgjhfomjieaadpoljlnidmbgkdftfpack
didkfdopbffjkpolethpcjkohcpalicd
eedlgdlajadkbbjoobobefphmfkcchfk
eimadpbcbfnmbkopoojfekhnkhdbieeh
fadndhdgpmmaapbmfcknlfgcfimmmieb
fbgcedjacmlbgleddnoacbnijgmiolem
fdpohaocaechififmbbbbbknoalclacl
felcpnemckonbbmnoakbjgjkgokkbaeo
ffjnfifmelbmglnajefiipdeejghkkjg
finhmkgpdmkajhomnckhabkfeakhcamm
fhjanlpjlthhbhbnjohflphmfccbhmoi
fklgmciohehgadlathljjhgdojfjihhk
fmidkjgknpkbmninbmklhcgaalfalbdh
fnhmjceoafkkibpijbfpfajbhkknadmb
gfbepnlhpkbgbkcebjnfhgjckibfdfkc
gfkpklgmocbcbdabfellcnikamdaeajd
gmopgnhbhiniibbiilmbjilcmgaocokj
gpdjojdkbbmdfjfahjcgigfpmkopogic
gppongmhjkpfnbhagpmjfkannfbllamg
hcbddpppkenfjifbcfnhmelpemdoepkk
iedjpcecgmldinkbojiocmdaedhepbpn
iginnfkhmmfhlkagecmpgofnjhanpmklb
ikdgincnppajmpmnhfheflannaiapmlm
iolcbmjhmpdheggkocibajddahbeiglb
jbebkmmlkhioeagiekpopmeecaepaihd
jicldjademmddamblmadllfneeaeeclik
jiiidpmjdakhbgkbdchmhmnfbdebfnhp
jpefkkpmalfnilnbghfnjodceifpemdb
kammdlphdfejlopponbapgpbgakimokm
kfimphpokifbjgmjflanmfeppcjimgah
kgaebnfbgpcenglnhjhglinfiecgecfij
kimjfkgkpmafgngclkdpjdlkdlghoikh
kpghljlpdknmomchobaoecdlkcpocaga
lamfengpphafgjdgacmmnpakdphmijlji
Icpkicdemehhmkjolekhlglljnkggfcf
1djnabbinoccbodkejkdiolmadimbjkj
lipplpkgbnhdfdchoibgafjdblpjdkpi

1,000+

22
200,000+
900,000+
20,000+
10,000+
162
30,000+
400,000+
100,000+
700,000+
400,000+
900,000+
10,000,000+
1,000,000+
300,000+
100,000+
20,000+
2,000,000+
4,000,000+
1,000,000+
2,000,000+
5,000,000+
300,000+

7

4,000+
10,000+
400,000+
100,000+

0

200,000+
10,000+
1,000+
7,000,000+
1,000,000+
200,000+
181
1,000,000+
414
100,000+
400,000+
100,000+
30,000+
3,000+
100,000+
40,000+

5

1,000+
7,000+
30,000+
10,000+

28
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Table A.1 — continued from previous page

Extension Name

Extension ID

Number of downloads

A dénde Viajar
RotoGrinders - DraftKings Tools
Feedbro
TubeBuddy
Aerobi - Enhance Your YouTube Workouts
Screencastify - Screen Video Recorder
WAM: WordSeeker
CiteMaker CiteWeb | APA 7th Edn.
Keepa - Amazon Price Tracker
MetaMask
Bitwarden - Free Password Manager
ShadowPay Trademanager
Custom Cursor for Chrome™
Amazon Assistant for Chrome
InteractiveFics
The Newsroom Beta
BWR T
Global Twitch Emotes
Free Best VPN PC-Chrome-Unlimited Proxy Guide

Inphplhkejidgencalbkbngbiafmjnml
lokmacldfjfgajcebibmmfohacnikhhd
mefgmmbdailogpthfblennjfmnpnmdfa
mhkhmbddkmdggbhaaaodilponhnccicb
mlfkmhibffpoleieiomjkekmjipdekhg
mmeijimgabbpbgpdkinllpncmdofkcpn
mpejojclnbakefnlfmnkaaianojbicdk
naankklphfojljboaokgfbheobbgenka
neebplgakaahbhdphmkckjjcegoiijjo
nkbihfbeogaeaoehlefnkodbefgpgknn
nngceckbapebfimnlniiiahkandclblb
obhadkdgdffnnbdfpigjklinjhbkinth
ogdlpmhglpejoiomcodnpjnfgcpmgale
pbjikboenpfhbbejgkoklgkhjpfogcam
pcpjpdomebnlkbghmchnjgeejpdlonli
pgfokhpgehbmeifbpdhegfnpaahabfja
pgmbeccjfkdbpdjfoldaahpfamjjafma
pgniedifoejifjkndekolimjeclnokkb
pkihbahhbihfoebgdfkibnblbhjfgefc

32
10,000+
40,000+

1,000,000+

16

6,000,000+
158

4,000+
2,000,000+
10,000,000+
2,000,000+
70,000+
5,000,000+
8,000,000+
100,000+
199
500,000+
100,000+
207

Extensions can be visited at the Chrome Web Store via the website https://chrome.google.com/webstore/detail/{ ExtensionID }
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